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Introduction

Hunter and Goodchild (1996) and Kiiveri (1997) have proposed a simple model of positional
distortion in geographic data sets to account for the differences between true and measured locations
(throughout this paper true should be taken to mean as determined from a source known to be of higher
accuracy). A point’s true location (x,y) is distorted by the addition of a small vector displacement
(ex,ey) to give the measured location of the point (x+ex,y+ey). The displacements vary, but are assumed
to be strongly spatially autocorrelated; collectively they form a vector field e e e e whose components at
any point are (ex,ey). In order to avoid folding or ripping, it is necessary that the components of eeee be
constrained such that there are no cliffs in either surface, and such that their derivatives with respect
to x and y respectively are always greater than –1.
   In order to detect positional distortion it must be possible to match point locations in the data set
in question to points in another data set of higher accuracy (see Church et al., 1998, for an extensive
discussion of this issue). This is often difficult, particularly if there is ambiguity in the definition of
mapped features, such as often exists in the natural resources area. For example, it would be very
difficult to match points between two versions of a soil map, or even to agree that one was of higher
accuracy than the other. Higher accuracy is often associated with a larger scale, but if the scale is
different between the two data sets there would be no reason to expect pairs of features to match at
all. On the other hand, location matching is much more reasonable in the case of well-defined
cultural features, particularly when two sources exist at the same scale for the same area but with
independent lineages. We consider such a case in this paper.

   In most industrial countries it is now possible to obtain so-called street centerline databases,
containing representations of the approximate centerlines of the road and street network. Such
databases are of immense value for emergency response, road maintenance, delivery and collection
services, routing and navigation, and many other functions. Their importance is such that a
significant commercial production and dissemination sector has emerged. In the U.S., this industry
initially added value to the public-sector TIGER database (produced for the 1980 census through a
collaboration between the U.S. Bureau of the Census and the U.S. Geological Survey), and many
products still have a TIGER legacy. More recently, however, companies have tended to build from
scratch, beginning with aerial photography or vehicle-mounted GPS, in order to obtain higher
positional accuracy. At this time, therefore, it is possible to obtain several databases covering a given
area of the U.S., with identical features in varying positions. The research described in this paper is
based on an analysis of six such databases for an area of Goleta, Calif.

   There are many practical motivations for wanting to determine the positional distortion between
two databases. If one knew eeee, one could in principle correct one database to the other, removing any
positional differences. Our research is driven by the problem of interoperation between street
centerline databases in intelligent transportation systems (ITS). Consider the following scenario. A
vehicle is being driven through an area, and information is being provided to the driver, including
driving directions, from a system in the vehicle that includes a copy of Database A. The system is
receiving updates on the state of the road system from a central server, maintained by the
Department of Transportation, working off Database B. The position of an accident is broadcast
from the server, as a coordinate location. The system in the vehicle attempts to match the location to
its own street network. But the match fails because the positional difference between the two
databases is sufficient to allocate the accident to the wrong street. Our analyses of the databases in the
test area show that differences are frequently this large.

   In this paper we present an analysis of the differences between two of these databases, and test a
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model of eeee. We show how this model might be used to support error-free interoperation of the two
databases using the concept of an ITS Datum, a proposed sparse network of control points.

Sampling the Error Field
Figure 1 shows two of the databases for a small part of the study area. The error field was sampled by
determining its two components at street intersections, after matching such intersections by the
names of the intersecting streets. As in all such databases, it was necessary to deal with differences in
the naming and spelling of streets, and with problems caused by multiple intersections between the
same pairs of streets. In some areas, particularly the lower left, the magnitudes of the positional
differences clearly approach the distances between adjacent streets. The two sets of streets are shown
superimposed on an interpolated field of distortion magnitude, or (ex

2 + ey

2)1/2.

   Whi
Figure 1.  Plot of a section of the two databases, superimposed on an interpolated
field showing the magnitude of the distortion vector.
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le this method of intersection matching works reasonably well in this case, it clearly will cause
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problems in rural areas where intersections are few and far between, or in cases where the names of
streets are not available. In such cases it may be possible to find match points entirely from geometric
information, but this seems inherently more risky and was not pursued in this study.

Models of the Error Field
Node matching provides an irregularly-spaced sample of evaluations of eeee. In order to make a
complete adjustment of one database to fit the other, we need to have exhaustive rather than sample
knowledge of eeee. Kiiveri (1997) argues that eeee must be everywhere smooth, and fits simple polynomial
and trigonometric functions of the coordinates to both components of eeee. Church et al. (1998) argue
that any of a wide range of spatial interpolation methods might also be used; they argue that they are
to be preferred over Kiiveri’s functions because we have no reason to suppose that eeee is a simple
function of the coordinates. In this paper we focus on the smoothness condition, and argue that it
may be unwarranted for two reasons.

   Consider first the processes by which such databases are made, and the likely implications of those
processes for positional error. Three methods are considered here. First, a street centerline database
can be constructed from existing pieces, such as digitized subdivision maps, digitized topographic
maps, or existing databases. When such fragments are merged, one can expect differences of
registration to show up as failure to match along the fragment edges. But edgematch problems will
only appear in areas where streets or other features cross fragment edges; where features are absent
such problems may be invisible, or may simply be ignored. In effect, the result is a mosaic of
fragments, with distortions that persist within fragments, and change sharply at fragment edges.

   Second, consider a database constructed from aerial photography. Here the significant sources of
positional inaccuracy relate to registration, and to the practice of merging fragments of aerial
photographs into a single mosaic. Again, we can anticipate that misregistration errors will persist over
areas that depend on the same set of registration points, and change sharply at edge boundaries; and
that errors at edge boundaries will be detected only when edges are crossed by features.

   Finally, consider a database constructed by driving streets with in-vehicle GPS. Errors in GPS
positions are known to be strongly autocorrelated through time, and to change sharply when the set
of observed satellites changes. While the result will clearly depend on the strategy used to traverse the
street network, it seems that this method also is capable of producing sharp discontinuities in the
error field. In summary, there are good reasons to believe that the positional error field of a street
centerline database will show jumps and discontinuities under each of the standard methods of
production.

   Con
the co

)
Figure 2.  Effect of a cliff on a linear feature (left); editing with a smooth line (right
PAGE 4

sider now the implications of discontinuities in the error field. A discontinuity is defined by
ndition that eeee(ssss+δδδδssss) - eeee(ssss) tends to some finite vector aaaa as the magnitude of δδδδs s s s tends to 0; in
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other words, two points an infinitely small distance apart can have different positional error vectors.
It was argued earlier that cliffs could not exist in a distortion field because any such cliff would
introduce a sharp break in any linear feature that crossed it. Let ssss and ssss+δδδδssss denote two points on a
linear feature a small displacement    δδδδssss apart. Then the linear feature will show a sudden horizontal
offset or jump with a direction and magnitude defined by aaaa. If this occurred during the production of
the database, the producer could adopt one of two strategies: 1) smooth out the jump by editing the
feature (Figure 2), or 2) revise the production process. But if no feature crossed the cliff, the cliff
would go undetected.

   The traditional gridiron city of the 19th century was highly connected, with interruptions in the
network only along rivers, ravines, railroads, or other features too difficult to cross. In the mid 20th

century urban planning practice changed to a new model, with high connectivity within
subdivisions, but low connectivity between them and along major arteries. Access points to
subdivisions were limited, either for reasons of security (the gated community being an extreme
example), or to limit access to major arteries. The practice is also convenient commercially, if stores
can be positioned at or near subdivision access points.

   In summary, we propose a model of the distortion field that is very different from that of Kiiveri
(1997), or that implied by the interpolated surface of Figure 1. In our model, the plane is partitioned
into a number of zones; within each zone, eeee is constant. We term this the piecewise constant model.
The model generalizes readily to the case where eeee is a piecewise function of the coordinates, as for
example where the distortion within one zone is described by an affine transformation, but we do not
consider that generalization here. In the next section we implement the model using a novel
clustering technique based on geostatistical principles.

Clustering the Error Field
‘Regioning’ seems to be a natural component of human thought—we speak of this place and that
with confidence and regularity. Yet quantitative methods for automatically locating these regions
given a set of geographic data are still insufficient to cope elegantly with many real world problems.
Geographic clustering problems are ‘hard’, both mathematically and statistically. Posed as
optimization problems, clustering problems are part of the larger class of location-allocation
problems whose computational complexity rises exponentially with the number of observations.
Posed within a statistical framework, spatial clustering problems immediately inherit the set of
difficulties attached to most spatial datasets, chief of which is the lack of independence among nearby
observations. Geostatistics is the branch of statistics which has most directly addressed the problem of
spatial dependence between observations (e.g., Isaaks and Srivastava, 1989). It thus seems natural
that spatial clustering should in some way benefit from the insights of geostatistics. That is the goal
we pursue here.

   We begin to build the bridge between geostatistics and clustering by making use of a common
geostatistical tool, the empirical semivariogram. The semivariogram plots the variance of a pair of
spatial observations as a function of their distance apart. The result is a summary  statistic, that
describes the average variance between a given point and its neighbors, expressed solely as a function
of the distances between that point and its neighbors. Since the variogram is a type of average
(defined below), roughly half the data points will have variances above and half below the variogram
value. We take advantage of this relationship to define a ratio of areal dependence (RAD) statistic,
which has an expected value of 0. When calculated for each point and plotted, this statistic is a useful
exploratory spatial data analysis technique, helping the analyst to assess the number and locations of



FUNK, CURTIN, GOODCHILD, MONTELLO, NORONHA

PAGE 6

clusters, if indeed they exist at all. In addition, we show that it can be used as a type of ‘variance
filter’, allowing us to arrive at more meaningful clusters by removing points with high RAD values.

7KH#DQJXODU#VHPLYDULRJUDP
The spatial dependence of values may be measured by means of the semivariogram (Cressie, 1993;
Deutsch and Journel, 1992; Isaaks and Srivastava, 1989; Matheron, 1963). The semivariogram
produces bucket estimates of the variance between pairs of points at varying distances or lags h. The
semivariance of the set of points at a given lag, γ(h), defined for a stationary random process (Z), is
described as:

where γ(h) is the semivariance for the set of points whose interpoint distances fall within the span of
lag h, (i,j)|h(i,j)=h denotes all the pairs of points whose distances place them in lag h, N(h) is the total
number of pairs found within this lag, and (Zi – Zj)

2 is the squared difference in the process between
any two points separated by lag h.

   The error field eeee is a vector field, with two components at any location, whereas the variogram is
normally computed for a scalar field Z. In our cluster model, we hypothesize that eeee will be constant
within each zone. For the purposes of this paper, we assume that constancy of direction within each
zone is an adequate test of the model, and ignore the possibility of variation in magnitude. But the
difference between two angles cannot simply be described by subtracting one angle from the other.
We now describe our proposed method for the computation of a semivariogram for angular data,
based on principles of circular statistics (see Batschelet, 1981, for an excellent review of circular
statistics).

   Let eeeei and eeeej denote samples of the error field at two points i and j. We define rrrrij as the mean of unit
vectors in the directions of the error field at the two points, that is:

Thus if eeeei and eeeej are the same they will both equal rrrrij, but rrrrij will have no magnitude when the
directions are 180 degrees apart.

   We define S2 as one minus the magnitude of rrrr and substitute it in the computation of the
semivariogram, as follows:

( ) ( ){ }r e e e eij xi i xj j yi i yj je e e e= + +2 2,
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( ) ( , ) ( , )
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N h

Z Zi ji j h i j h
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Applying this equation to the distortion dataset previously discussed yields the empirical angular
semivariogram shown in Figure 3.

   This figure shows how the variation of the distortion angles increases with distance. There is a
rather high inherent variability, with a minimum semivariance or nugget of about 0.15. The range is
about 800 m; at this distance the semivariance reaches a sill of about 0.35.

7KH#UDWLR#RI#DUHDO#GHSHQGHQFH
We began this section be remarking that the semivariogram describes the average variance of
observations at different lags. In this section we use this observation to construct a rather simple
exploratory data analysis tool called the ratio of areal dependence, or RAD statistic. The RAD statistic
has an expected value of 0.0. Positive values indicate that the local variance between a point and the
set of neighbors found within the range is much higher than the expected variance for a set of points
at those distances. Negative values depict the opposite. The RAD statistic is the ratio of the actual

local variance at some point (Vi) divided by the expected (or modeled) variance at that point (Mi), or:

Note that both Vi and Mi are measured between point i and a set of neighbors within a given range.
Let Nr be the set of indices for all neighbors whose distance from the ith point is less than the range,
and let nr be the number of these points. Then the RAD statistic is a measure of actual versus
expected local variance, where the actual local variance is defined as:

RAD
V

Mi
i

i
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Figure 3.  Semivariogram of angular distortion values.
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and the expected or model variance is:

   A plot of the RAD values is shown in Figure 4. The filled circles have RAD values of greater than

or equal to 0.0, indicating a higher than average spatial contiguity. The points denoted by triangles
have relatively low (< 0.0) RAD values, indicating that they are relatively uncorrelated with their
neighbors. This plot, and the RAD statistic in general, illustrate a fact sometimes forgotten by
practitioners of spatial statistics: the variogram models average variance values, generated from
ensembles of points at various lags. Individual points will tend to be more or less correlated with their
neighbors than the variogram predicts. Those points which exhibit high spatial autocorrelation will
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Figure 4.  A plot of the RAD values associated with angular distortions
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have a high RAD, and vice versa. Thus regions with high RAD values designate natural regional
patches which share similar values, and regions with high RAD values are dissimilar from their
neighbors and are natural ‘barriers’ demarcating one region from another.

5HVXOWV
The angular variogram provides a statistically valid, somewhat interesting way to measure the spatial
dependence of circular data. For our study region, the variogram exhibited a well-defined, highly
localized spatial autocovariance structure, with points farther than 800 meters apart showing virtually
no correlation. Even nearby intersections exhibited a marked degree of variance, as illustrated by the
high nugget of the fitted variogram. Often, nearby streets exhibited dissimilar error vector orien-
tation.

   The RAD values plotted above depict the degree of spatial autocorrelation for the angular
components of the distortion vectors. Visual inspection of Figure 4 indicates how successful any
spatial clustering or ‘patchwise’ modeling scheme is likely to be. Some areas, particuarly the pockets
of homogeneous street intersections in the upper left and lower right of the image, seem like natural
‘clusters’, and are likely to have distortions created by a unique or similar process, which could be
modeled with ease. Thus high RAD values suggest areas dominated by sources of ‘systematic’ error.
Other regions, such as the pockets of triangles in the top and bottom of the image, show what may
be ‘random’ error. Since the purpose of clustering is typically driven by a desire to model or elucidate
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Figure 5.  Initial clustering based on RAD values.
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systematic effects, we explored the effects of screening out the high RAD values in conjunction with
an application of Ward’s clustering algorithm. The idea is similar to that employed when removing
outliers from a dataset, and the hope is that the resulting spatial partition depicts the systematic
component of the variation.

   As an example, Figure 5 shows a clustering of the distortion data. The following six fields were used
to cluster the data: the x and y coordinates, the x and y components of the error vectors, and the
magnitude and angle of the error vectors. Each of these variables was standardized to have a mean of
zero and variance of one. The standardized data set was then clustered via Ward’s method, a
hierarchical clustering technique that seeks to minimize the squared distances (or trace) between the
cluster centers and their constituent points (Hartigan, 1975).

   This clustering is far from ideal. As a prelimary step in a patch-wise error estimation process, the
clusters depicted above would be difficult to interpret and use, since they do not clearly partition the
space into mutually exclusive regions. The classes appear to overlap in geographic space, and reappear
sporadically throughout the image. There are often situations in which such a pattern is legitimate
and even desirable. However, for the problem at hand, we have assumed that errors are, to some
degree, spatially determined—nearby points in the same clusters should share the same source of
error. This is where the RAD statistic can be of assistance. We suggested earlier that this calculated
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Figure 6.  Clustering using only high RAD values.
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variable differentiates between points exhibiting ‘systematic errors’ (high RAD values) and ‘random
errors’ (low RAD values). Furthermore, in our discussion of the angular variogram, we noticed that
the error vectors appeared to exhibit a large nugget effect, from which we inferred that about 42% of
the angular variance was not explained by the values’ spatial distribution. If these conclusions are
valid, then it seems reasonable to exclude points with low RAD values, since presumably these values
are dominated by random as opposed to systematic effects. To examine the results of such a
clustering we excluded points with RAD statistics of less than zero and re-ran our clustering on the
remaining points. The results appear in Figure 6.

   This clustering is appealing at an intuitive level. Note that the clusters effectively partition the
geographic regioin, and demarcate well the various patches. Compared to the clustering performed
on all the points, the results are much more spatially cohesive, which is not surprising, since we
rejected all the data points which differed dramatically from their neighbors. Whether this rejection
of some points and retention of others improves our capacity to comprehend and capture the spatial
processes under study is difficult to evaluate. Certainly the clusters defined above seem very
reasonable. It is difficult to put ‘space’ into clustering algorithms. In general, including the x and y
locations, as we have done here, imparts a measure of spatial compactness to the resulting clusters.
Their relative importance can be estimated by the sum of their variances compared to the sum of the
variances of all the included variables. In this example, since the variables were standardized and six
variables were used, x and y represent 33% of the total variation. Thus the relative weighting of space
in these clusterings is about one third.  By increasing the variance of the x and y variables, we could
eventually ensure spatially compact clusters. This compactness comes at a price. As the importance of
the x and y variables increases, there will be increased variability within the cluster (in terms of the
devaluated variables), as well as the tendency  to lose coherent regions which are narrow bands.
Clusters will become as round as possible. The RAD filter seems to obviate this undesirable tradeoff.
In the clustering above, the clusters seem to be spatially cohesive while still allowing classes to take on
complex shapes. One would hope this suggests an increased capability to follow the contour lines of
the underlying ‘truth’.

Conclusion
This is clearly a preliminary study. The angular semivariogram can be a useful geostatistical tool for
examining the spatial distribution of vector valued data, but the angular component alone is
insufficient to describe the errors found in spatial databases.  Still, it was our hope that by definining
rigorously the way one variable varied spatially over the study site, additional insight and leverage
into the clustering problem could be obtained. In this sense, the RAD statistic seems a somewhat
promising but still rather ad hoc tool. Simply throwing away outlying points may be a great way to
bring out underlying patterns in data, even if they are not really there. Clearly, the RAD statistic
must be used with caution as a ‘variance filter’.

   We have tried to explore how one might use geostatistics to bring space intelligently into the
problem of clustering datapoints into homogeneous units that effectively partition geographic space.
The latter two criteria are often at odds. If, however, the spatial data under consideration are in fact
the result of a process that really imparts a pattern of spatial correlation, then excluding ‘variance
outliers’ may help to reveal the knowledge underneath the noise.

   We have argued in this paper that a piecewise approach to positional distortion may make more
sense, in the light of what is known about production processes, than an approach that assumes
smooth variation. The results appear to bear this out, in a preliminary way, though more testing is
clearly needed in a wider range of circumstances.
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